Die wichtigsten Logarithmusregeln
Logarithmen und die dazugehörigen Rechenregeln sind essenziell, um exponentielle Zusammenhänge zu verstehen und Gleichungen zu lösen. Hier sind die wichtigsten Regeln für den Umgang mit Logarithmen:
Regelname | Formel |
---|---|
Produktregel | \(\log_b(m \cdot n) = \log_b(m) + \log_b(n)\) |
Quotientenregel | \(\log_b\left(\frac{m}{n}\right) = \log_b(m) - \log_b(n)\) |
Potenzregel | \(\log_b(m^n) = n \cdot \log_b(m)\) |
Basiswechselregel | \(\log_b(m) = \frac{\log_k(m)}{\log_k(b)}\) |
Logarithmus von 1 | \(\log_b(1) = 0\) |
Logarithmus der Basis | \(\log_b(b) = 1\) |
Diese Regeln sind entscheidend, um komplexe Logarithmenausdrücke zu vereinfachen und Gleichungen zu lösen, die Logarithmen enthalten.